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Abstract

In this paper we use a recently developed concise general theory of nonlinear magnetoelasticity to analyze the
mechanical response of (a) a circular cylindrical tube under steady rotation about its axis in an azimuthal magnetic field,
and (b) a solid circular cylinder also under steady rotation about its axis in an axial magnetic field. It is found that for
problem (a) the magnetic field can either enhance or counteract the effect of rotation, while for problem (b) the magnetic
field reinforces the effect of rotation.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent series of papers (Dorfmann and Ogden, 2003a,b; Dorfmann and Ogden, 2004, in press) we
have developed several alternative formulations of the equations of nonlinear magnetoelasticity and applied
those equations to the solution of a number of boundary-value problems. The equations have intrinsic
mathematical interest but the work is primarily motivated by its application to the response of magneto-
sensitive (MS) elastomers. In the present paper we make use of a particularly simple formulation described
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by Dorfmann and Ogden (2004, in press) in the analysis of two problems of practical interest for an incom-
pressible isotropic magnetoelastic solid. These are for (a) a thick-walled circular cylindrical tube, and (b) a
solid circular cylinder, each undergoing a steady rotation about its axis. For (a) the rotation takes place in
the presence of an azimuthal magnetic field, while for (b) the magnetic field is axial.

In Section 2 we summarize the mechanical and magnetic balance equations, while in Section 3 the con-
stitutive law for a magnetoelastic solid is developed, both in general and for the particular case of an iso-
tropic magnetoelastic material, and for both compressible and incompressible materials. We include
formulations of the constitutive law based separately on the magnetic field and the magnetic induction
as the independent magnetic variable.

In Section 4 problem (a) is analyzed. In particular, we obtain an explicit formula that relates the rota-
tion, the magnetic field and the deformation through an integral involving the energy function. We point
out that this is similar in structure to the problem of inflation of an elastic tube under an internal pressure.
Because of the differences in the constitutive law as compared with a purely elastic material, however, the
effect of the magnetic field can be different from that of a pressure. In particular, if the length of the tube is
maintained under a rotation (without a magnetic field) by the application of an axial load then this load
may be positive or negative, depending on the form of constitutive law. The presence of the magnetic field
can either enhance or counteract the effect of rotation, depending on the magnetic contribution to the con-
stitutive law. Under reasonable assumptions on the latter the axial load in the absence of rotation can be
negative when an azimuthal magnetic field is applied, thereby preventing the tube from lengthening. Thus,
the magnetic field alone, without an applied axial load, would induce a magnetostrictive increase in length.

The situation is somewhat different for problem (b), which is examined briefly in Section 5. In this case,
because the magnetic field considered is axial, under the same constitutive assumptions as for (a), the mag-
netic field enhances the effect of rotation. Thus, without the rotation, the magnetic field generates a short-
ening of the cylinder. This is consistent with the discussion of the problem of extension of a cylinder in an
axial magnetic field due to Kankanala and Triantafyllidis (2004), who considered a special form of consti-
tutive law. Section 6 contains some closing remarks.
2. Basic equations

2.1. Kinematics

Consider a magneto-sensitive body occupying a region B0 in a three-dimensional Euclidean space in the
absence of mechanical loads and magnetic fields. We assume that the body is stress free in this configura-
tion. Let material points in B0 be labelled by their position vectors X relative to some chosen origin, and
denote time by t 2 I � R, where I is an interval of R.

Suppose that the material is now deformed by the application of mechanical loads and a magnetic field
such that the point X moves to a new position x = v(X, t) in the resulting configuration, which we denote by
Bt. The vector field v describes the motion of the body and is defined for t 2 I and for X 2 B0 [ oB0, where
the boundary of B0 is denoted by oB0.

The time-dependent deformation gradient tensor relative to B0, denoted F, and its determinant, denoted
J, are
F ¼ Grad v; J ¼ detF > 0; ð1Þ

respectively, where Grad is the gradient operator with respect to X. The Cartesian components of F are
given by Fij = oxi/oXj, where Xi and xi, i = 1,2,3, are the Cartesian components of X and x, respectively.
For full details of the kinematics of solid continua we refer to, for example, Ogden (1997) and Holzapfel
(2001).
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The velocity, denoted v, and acceleration, denoted a, of a material point X are defined as
v � x;t ¼
o

ot
vðX; tÞ; a � x;tt ¼

o2

ot2
vðX; tÞ; ð2Þ
where o/ot is the material time derivative, denoted for brevity by ,t.
2.2. Magnetic balance equations

In the current configuration Bt the relevant magnetic field variables are H, the magnetic field, B, the
magnetic induction, and M, the magnetization. These are related by the standard equation
B ¼ l0ðHþMÞ; ð3Þ
where l0 is the magnetic permeability in vacuo. In vacuo, M = 0 and Eq. (3) reduces to B = l0H. For time-
independent magnetic fields, to which we restrict attention here, the vectors B and H satisfy the appropriate
specializations of Maxwell�s equations, which are
divB ¼ 0; curlH ¼ 0; ð4Þ
where, respectively, div and curl are the divergence and curl operators with respect to x. A further connec-
tion between these magnetic field vectors will be introduced in the form of a constitutive law in Section 3.
Then, if, for example, the magnetization M of the material is given by a constitutive law as a function of B,
Eq. (3) determines H, also as a function of B.

Eqs. (3) and (4) are expressed in Eulerian form. Lagrangian forms for the magnetic induction and the
magnetic field, denoted by Bl and Hl respectively, are obtained by pull-back operations from Bt to B0.
These Lagrangian fields are related to B and H through
B ¼ J�1FBl; H ¼ F�THl; ð5Þ
where F�T = (F�1)T and T denotes the transpose of a second-order tensor. For derivations of these connec-
tions we refer to, for example, Dorfmann and Ogden (2003b, 2004) and Steigmann (2004).

The standard identities
DivðJF�1BÞ ¼ J div B; CurlðFTHÞ ¼ curl H ð6Þ
ensure that the Maxwell equations (4) are equivalent (for suitably regular deformations) to
Div Bl ¼ 0; Curl Hl ¼ 0; ð7Þ
where, respectively, Div and Curl are the divergence and curl operators with respect to X.
However, no corresponding simple transformation between M and Ml arises naturally in a similar way,

but, in view of the fact that H and M occur as a sum in (3), a Lagrangian form of M, denoted Ml, may be
defined, similarly to (5)2, by
Ml ¼ FTM: ð8Þ
(Note, however, that this is not the only possible definition of a Lagrangian form of M, since Ml could
equally be defined similarly to Bl.) On use of (5) and (7) in (3) we obtain
J�1cBl ¼ l0ðHl þMlÞ; ð9Þ

where c is the right Cauchy-Green deformation tensor defined by c = FTF.
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2.3. Mechanical balance laws

Let q0 and q denote the mass densities in the reference and deformed configurations, B0 and Bt, respec-
tively. Then, for the considered continuum, the conservation of mass may be written in the standard form
Jq ¼ q0; ð10Þ

which we employ here.

In the absence of mechanical body forces, the equation of motion may be written in the simple form
divs ¼ qa; ð11Þ

where s is the total stress tensor (see, for example, Dorfmann and Ogden (2003a,b, 2004) Steigmann (2004),
Kovetz (2000), Hutter and van de Ven (1978) and Maugin (1988) for discussion of different stress tensors
and magnetic body forces). Balance of angular momentum requires that s be symmetric:
sT ¼ s: ð12Þ

If the governing equations are expressed in Eulerian form, as above, then the field variables B, H, M and s

are defined in the current configuration as functions of the position vector x. These equations can also be
recast in Lagrangian form. For this purpose we define a total nominal stress tensor T related to s by
T ¼ JF�1s: ð13Þ

The equation of motion (11) is then expressible equivalently as
DivT ¼ q0a: ð14Þ
2.4. Boundary conditions

To complete the formulation of boundary-value problems we need to supplement the governing differ-
ential equations with appropriate constitutive laws (which are considered in Section 3) and boundary con-
ditions. The magnetic boundary conditions may be given in either Lagrangian or Eulerian form. Here,
however, we confine attention to the latter. At a bounding surface of the considered material in the de-
formed configuration the vector fields B and H satisfy the standard jump conditions
n � ½B� ¼ 0; n � H½ � ¼ 0; ð15Þ

where the square brackets indicate a discontinuity across the surface and n is the unit normal to the surface,
which, by convention, is taken as the outward pointing normal to the boundary. In the case of (15)2 it is
assumed that there are no surface currents.

At the boundary of the body the (total) traction continuity condition is (in Eulerian form)
½s�n ¼ 0; ð16Þ

where, at the exterior of the body boundary, the traction includes the appropriate Maxwell stress (in the
case of a vacuum, for example) and any applied mechanical tractions.

Boundary conditions in which the position is prescribed on part of the boundary may also be prescribed,
but we do not make them explicit here.
3. Constitutive equations

To derive constitutive equations for the total stress tensor s and the magnetization M, we assume the
existence of a free energy function, denoted W and defined per unit mass, with F and B as independent vari-
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ables. Use is then made of the connection (5)1 so that F and Bl are the independent variables and the free
energy function denoted U. Thus, we write
W ¼ WðF;BÞ � WðF; J�1FBlÞ � UðF;BlÞ: ð17Þ
Objectivity requirements (see, for example, Steigmann (2004) and Dorfmann and Ogden (2003b)) enable U
to be treated as a function of c (instead of F) and Bl.
3.1. Compressible materials

3.1.1. Use of Bl as an independent variable

For unconstrained materials, we have (see Dorfmann and Ogden (2004, in press))
s ¼ qF
oU
oF

þ l�1
0 B� B� 1

2
ðB � BÞI

� �
; ð18Þ
where I is the identity tensor, and symmetry of s follows automatically from objectivity of U.
In terms of U the (Eulerian) magnetization vector is given by
M ¼ �qJF�T oU
oBl

: ð19Þ
In vacuum, U � 0, and the stress s reduces to the Maxwell stress, here denoted sm, given by
sm ¼ l�1
0 B� B� 1

2
ðB � BÞI

� �
; ð20Þ
with B = l0H. On use of (4) it then follows that div sm = 0.
The corresponding Lagrangian forms of the total stress tensor and the magnetization vector are given by
T ¼ q0

oU
oF

þ l�1
0 Bl � B� 1

2
ðB � BÞJF�1

� �
ð21Þ
and
Ml ¼ �q0

oU
oBl

: ð22Þ
On use of the amended free energy function introduced by Dorfmann and Ogden (2004), denoted
X = X(F,Bl) and defined by
X ¼ q0Uþ 1

2
l�1
0 J�1Bl � ðcBlÞ; ð23Þ
we may write the total stress tensors s and T in the compact forms
s ¼ J�1F
oX
oF

; T ¼ oX
oF

: ð24Þ
Note that these equations apply only within the material since F is not defined outside.
On use of Eqs. (23) and (9), which is based on (3), together with (22) we obtain
Hl ¼
oX
oBl

; ð25Þ
and, for a given Bl, the magnetization Ml is then given by (9) and (25). As for (24), Eq. (25) applies only
within the material.
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3.1.2. Use of Hl as an independent variable

As in Dorfmann and Ogden (2004, in press) we now consider an alternative formulation of the governing
equations based on use of H (or, equivalently, Hl) as the independent magnetic variable. For this purpose
we make use of the Legendre transformation
X�ðF;HlÞ ¼ XðF;BlÞ �Hl � Bl; ð26Þ

which defines X�(F,Hl) as a function of F and Hl (under suitable invertibility assumptions on (25)). Then,
the counterparts of Eqs. (24)2 and (25) are
T ¼ oX�

oF
; Bl ¼ � oX�

oHl
; ð27Þ
with Ml given by
Ml ¼ l�1
0 J�1cBl �Hl: ð28Þ
Alternatively, instead of defining X�(F,Hl) via (26), and to avoid the need for using the Legendre transform,
an energy defined as a function of F and H or F and Hl could be defined ab initio and the constitutive law
then developed in terms of Hl.

In either formulation the Eqs. (7), or equivalently (4), must be satisfied.
3.2. Incompressible materials

For an incompressible material we have the equivalent constraints
detF � 1; q � q0; ð29Þ

and the amended free energy function then simplifies to
X ¼ q0Uþ 1

2
l�1
0 Bl � ðcBlÞ: ð30Þ
The expressions for the total stress tensors (24) now include the Lagrange multiplier p associated with the
constraint (29) and are given by
s ¼ F
oX
oF

� pI; T ¼ oX
oF

� pF�1; ð31Þ
in terms of X and
s ¼ F
oX�

oF
� p�I; T ¼ oX�

oF
� p�F�1; ð32Þ
in terms of X�, where we have used p� for the Lagrange multiplier since in general it will not be the same as
p.

Eqs. (25) and (27)2 are unchanged, except that in (33) the constraint (29) is in force. For convenience we
collect these together here as
Hl ¼
oX
oBl

; Bl ¼ � oX�

oHl
: ð33Þ
3.3. Isotropy

We note that the symmetry considerations for magnetoelastic materials are similar to those arising for
transversely isotropic elastic solids. Working in terms of the formulation based on X and following the
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analysis of transversely isotropic elastic solids in Spencer (1971) and Ogden (2001), for example, we define
an isotropic magnetoelastic material as one for which X is an isotropic function of the two tensors c and
Bl � Bl. In this case the form of X is reduced to dependence on the principal invariants I1, I2, I3 of c, defined
by
I1 ¼ trc; I2 ¼
1

2
ðtrcÞ2 � trðc2Þ
h i

; I3 ¼ det c ¼ J 2; ð34Þ
where tr is the trace of a second-order tensor, combined with the additional invariants involving Bl, defined
by
I4 ¼ jBlj2; I5 ¼ ðcBlÞ � Bl; I6 ¼ ðc2BlÞ � Bl: ð35Þ

The explicit form of s for an incompressible isotropic magnetoelastic material is
s ¼ 2X1bþ 2X2ðI1b� b2Þ � pIþ 2X5B� Bþ 2X6ðB� bBþ bB� BÞ; ð36Þ
while the magnetic field is given by
H ¼ 2ðX4b
�1Bþ X5Bþ X6bBÞ; ð37Þ
where I3 � 1, X = X(I1, I2, I4, I5, I6), the subscripts 1, 2, 4, 5, 6 signify partial differentiation with respect to
I1, I2, I4, I5, I6, respectively, and b = FFT is the left Cauchy-Green deformation tensor.

In the formulation based on X�, we need to replace the invariants (35) by corresponding invariants using
Hl. For these, we choose to use the invariants K4, K5, K6 defined by
K4 ¼j Hlj2; K5 ¼ ðcHlÞ �Hl; K6 ¼ ðc2HlÞ �Hl: ð38Þ
Then, the total stress is
s ¼ 2X�
1bþ 2X�

2ðI1b� b2Þ � p�Iþ 2X�
5bH� bHþ 2X�

6ðbH� b2Hþ b2H� bHÞ; ð39Þ

and the magnetic induction is given by
B ¼ �2ðX�
4bHþ X�

5b
2Hþ X�

6b
3HÞ; ð40Þ
where X� = X�(I1, I2, K4, K5, K6) and X�
i is defined as oX�/oIi for i = 1,2, and oX�/oKi for i = 4,5,6.

We remark here that if the material properties depend on the sense of the magnetic (or magnetic induc-
tion) field then an additional invariant would be needed since, for example, X would not be invariant under
the transformation Bl ! �Bl. For simplicity we do not consider this possibility here.
4. Rotating tube

4.1. Kinematics

We now apply the equations discussed in Sections 2 and 3 to an incompressible isotropic magnetoelastic
circular cylindrical tube spinning about its axis with a constant angular speed x in the presence of an azi-
muthal magnetic field. Again we assume, for simplicity, that there are no mechanical body forces. Let the
tube in the stress-free reference configuration have internal and external radii A and B, respectively. The
geometry is defined by
A 6 R 6 B; 0 6 H 6 2p; 0 6 Z < L; ð41Þ

where R, H, Z are cylindrical polar coordinates and L is a constant (the length of the tube).
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Let the deformed geometry of the tube be given by the equations
a 6 r 6 b; 0 6 h 6 2p; 0 6 z < l; ð42Þ
where r, h, z are cylindrical polar coordinates in the deformed configuration, l is a constant and circular
symmetry is maintained.

Since the material is incompressible the deformation is given by
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�1
z R2 � A2
� �

þ a2
q

; h ¼ Hþ xt; z ¼ kzZ; ð43Þ
where kz is the (uniform) axial stretch and t denotes time.
The deformation is locally a pure homogeneous strain, the deformation gradient is diagonal with respect

to the cylindrical axes, and the principal stretches have the form
k1 ¼ k�1k�1
z ; k2 ¼

r
R
� k; k3 ¼ kz: ð44Þ
The corresponding matrix of components of b is also diagonal, with entries ðk�2k�2
z ; k2; k2z Þ.

The invariants I1 and I2 given by Eq. (34) are computed as
I1 ¼ k�2k�2
z þ k2 þ k2z ; I2 ¼ k2k2z þ k�2 þ k�2

z : ð45Þ
4.2. Magnetic field

We now assume that the magnetic field is azimuthal, with B and H having azimuthal components Bh and
Hh, respectively, which, because of the assumed symmetry, depend only on r. Since the cylindrical polar
axes are principal axes of the deformation, the Lagrangian fields Bl and Hl are also azimuthal. Their com-
ponents are denoted BlH and HlH and the connections Bh = kBlH and Hh = k�1HlH follow from the special-
ization of (5).

The invariants I4, I5, I6 and K4, K5, K6 are computed as
I4 ¼ B2
lH; I5 ¼ k2I4; I6 ¼ k4I4; ð46Þ
and
K4 ¼ H 2
lH; K5 ¼ k2K4; K6 ¼ k4K4: ð47Þ
4.3. Constitutive relations

The only non-zero components of s are, in cylindrical polar form, srr, shh and szz, and these depend only
on r. From Eq. (36) these are calculated as
srr ¼ �p þ 2k21 X1 þ X2ðk2 þ k2z Þ
� �

;

shh ¼ �p þ 2k2 X1 þ X2ðk21 þ k2z Þ þ ðX5 þ 2X6k
2ÞI4

� �
;

szz ¼ �p þ 2k2z X1 þ X2ðk21 þ k2Þ
� �

;

ð48Þ
while from Eq. (37) we obtain
H h ¼ 2 X4k
�2 þ X5 þ X6k

2
� �

Bh: ð49Þ
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Similarly, from Eqs. (39) and (40), we obtain
srr ¼ �p� þ 2k21 X�
1 þ X�

2ðk
2 þ k2z Þ

� �
;

shh ¼ �p� þ 2k2 X�
1 þ X�

2ðk
2
1 þ k2z Þ þ ðX�

5 þ 2X�
6k

2Þk2K4

� �
;

szz ¼ �p� þ 2k2z X�
1 þ X�

2ðk
2
1 þ k2Þ

� �
;

ð50Þ
and
Bh ¼ �2 X�
4k

2 þ X�
5k

4 þ X�
6k

6
� �

H h: ð51Þ
Since the deformation depends only on k and kz and we have the connections (46) it is convenient to intro-
duce a reduced form of X, denoted w, depending only on k, kz and I4. This is defined by
wðk; kz; I4Þ ¼ XðI1; I2; I4; I5; I6Þ; ð52Þ

taken in conjunction with (45) and (46).

The stress differences are now given by the simple expressions
shh � srr ¼ kwk; szz � srr ¼ kzwkz ; ð53Þ

where the subscripts k and kz signify partial derivatives. Similarly, simplified expressions for the magnetic
field and magnetization are obtained as
H h ¼ 2k�2w4Bh; Mh ¼ l�1
0 Bh � H h; ð54Þ
where w4 = ow/oI4.
By defining, similarly, a reduced form w� of X� by
w�ðk; kz;K4Þ ¼ X�ðI1; I2;K4;K5;K6Þ; ð55Þ

with (45) and (47), we obtain from (50) and (51)
shh � srr ¼ kw�
k; szz � srr ¼ kzw�

kz
; ð56Þ
and
Bh ¼ �2k2w�
4H h; Mh ¼ l�1

0 Bh � H h; ð57Þ

where w�

4 ¼ ow�=oK4.

4.4. Governing equations and analysis

Since Br = 0 the Eq. (4)1 is satisfied identically and yields no information about Bh, while equation (4)2
gives
H h ¼
c
r
; ð58Þ
where c is a constant.
The equation of motion (11) reduces to the radial component equation
dsrr
dr

þ srr � shh
r

¼ qar; ð59Þ
where ar = �x2r, which, on use of (56)1, becomes
dsrr
dr

¼ kw�
k

r
� qx2r: ð60Þ
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Here, becauseHh is continuous, it is convenient to useHlH as the independent variable and to work in terms
of w�.

From Eq. (20) the Maxwell stress exterior to the tube (assumed to be vacuum) has components
smrr ¼ smzz ¼ �smhh ¼ � 1

2
l0H

2
h: ð61Þ
Let smrr be denoted sm(r) to emphasize its dependence on r. Then, on integrating (60), assuming that there
are no mechanical tractions applied on the boundaries r = a and r = b, and applying the boundary condi-
tions on these boundaries, we obtain
1

2
ðb2 � a2Þqx2 þ smðbÞ � smðaÞ ¼

Z b

a
kw�

k

dr
r
: ð62Þ
Next, on use of (61) and (58), we obtain
1

2
ðb2 � a2Þ qx2 þ l0c

2 b
2 � a2

a2b2

� 	
¼

Z ka

kb

w�
k

k2kz � 1
dk; ð63Þ
in which we have changed the integration variable from r to k and introduced the notations ka = a/A,
kb = b/B. The latter are connected through
ðk2bkz � 1ÞB2 ¼ ðk2kz � 1ÞR2 ¼ ðk2akz � 1ÞA2; ð64Þ

which is obtained from the deformation (43)1.

Since Hh necessarily has the form (58), Bh is determined by (57). Note that if we had started with Bh as
the �independent� variable then it would be pre-determined from (54) as a function of r (implicitly and not
necessarily uniquely in general), dependent on the form of w, and in this sense it cannot, for this problem,
be regarded as an independent variable. We can think of Hh as being generated by an axial steady current, I
say, within the core of the tube, in which case c = I/2p, the value of which is at our disposal. We note in
passing that if the azimuthal magnetic field is replaced by an axial field Hz then this is necessarily constant
(from equation (4)2) and the Maxwell stress has the same value on each boundary, i.e. smðaÞ ¼ smðbÞ ¼
�l0H

2
z=2. Eqs. (62) and (63) simplify accordingly since the formulas (53) and (56) hold in this situation also.

The corresponding problem of rotation of a thick-walled tube (with no magnetic effects) has been
examined by Haughton and Ogden (1980a), and the specialization of formula (63) in this case was
given therein. In the analogous problem of inflation of a thick-walled tube under an internal pressure
P(>0) (see, for example, Haughton and Ogden (1979) and Ogden (1997)) with no magnetic field and
no rotation, the left-hand side of Eq. (63) is replaced by P and w� � w depends only on k and kz. The rota-
tion of a tube was also considered by Chadwick et al. (1977), who examined in detail aspects of existence
and uniqueness of solution for a freely rotating tube (i.e. a tube rotating in the absence of an applied axial
load).

For an elastic material in the absence of a magnetic field the terms in X�
5 and X�

6 vanish. Standard
inequalities such as the Baker-Ericksen inequalities require that X�

1 þ k2zX
�
2 > 0. Now, by (64), k2kz � 1

has the same sign for all r such that a 6 r 6 b. Therefore, if k2kz < 1 it follows that w�
k < 0 for a 6 r 6 b

and hence the integral is negative (since then kb > ka). For the integral to be positive we must therefore have
k2kz > 1, and hence w�

k > 0, for a 6 r 6 b (in which case ka > kb). Likewise, under pure rotation, again in the
absence of magnetic effects, we must have k2kz > 1 for a 6 r 6 b. One might expect intuitively that the inner
radius of the tube increases with the rate of rotation x and the length of the tube decreases, but the opposite
effect is not, in principle, excluded by the inequality k2kz > 1.

It is interesting to consider, for the purely elastic situation, the strain-energy function given by
w� ¼ w ¼ l
a
ðka þ kaz þ k�ak�a

z � 3Þ; ð65Þ
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where l and a are material constants satisfying la > 0 (see, for example, Ogden (1972, 1997)). We then
have
kwk ¼ lðka � k�ak�a
z Þ; ð66Þ
from which it follows that wk > 0 if and only if k2kz > 1. We shall return to consideration of (65) in connec-
tion with the expression for the axial load on the tube.

Turning now to the effect of the magnetic field we note that since both terms on the left-hand side of (63)
are positive, the effect of the rotation and the effect of the azimuthal magnetic field are each similar to the
effect of internal pressure. In particular, the integral must be positive. However, in the presence of the mag-
netic field the requirement w�

k > 0 for all r 2 [a,b] is no longer necessary. Therefore, in principle, this allows
w�

k to be negative for some values of r. However, since the constitutive law is different in the present situ-
ation, the interpretation can be different compared with the pure pressure case. This can be seen by noting
the formula
kw�
k ¼ 2ðk2 � k�2k�2

z ÞðX�
1 þ k2zX

�
2Þ þ 2k2I4ðX�

5 þ 2k2X�
6Þ; ð67Þ
which follows from (48) and (53). Indeed, it is even possible that k2kz < 1 for r 2 [a,b] provided the terms in
X�

5 and X�
6 provide positive contributions to w�

k large enough to ensure that the integral is positive. In par-
ticular, depending on the form of X�, an azimuthal magnetic field can enhance or counteract the effect of
rotation. On its own (without rotation) the magnetic field generates a magnetostrictive effect, which could
allow inflation or deflation of the tube coupled with either shortening or lengthening. These various possi-
bilities remain to be tested experimentally for the materials of interest.

We emphasize that for the considered azimuthal magnetic field the analysis applies for a tube of finite
length. There is therefore a normal stress on the ends of the tube arising from the component smzz of the
Maxwell stress given by (61). The traction that must be applied on the ends comes from the difference
between the normal stress szz within the material and the Maxwell stress smzz. The former is given by (53)2.

The resultant axial load, N say, on a cross-section (independent of z), calculated from within the
material, is given by
N ¼ 2p
Z b

a
szzrdr: ð68Þ
After some rearrangement, using (53), (59), then (61) and (58), and noting that the contributions of the
Maxwell stresses on r = a and b following integration cancel, we obtain
N ¼ p
Z b

a
ð2kzw�

kz
� kw�

kÞrdr þ
1

4
pqx2ðb4 � a4Þ: ð69Þ
A similar formula was given by Dorfmann and Ogden (in press) for the situation of a tube inflated by an
internal pressure in the presence of an azimuthal magnetic field. The corresponding resultant, Nm say, of
smzz on the ends of the tube is calculated as
Nm ¼ �pl0c
2 logðb=aÞ: ð70Þ
From (67) we see that if there is no magnetic field and the length of the tube is held fixed so that kz = 1 then
necessarily k > 1 under rotation. After a short calculation it can then be seen that the sign of the integrand
in (69) is that of X�

2 � X�
1, which, depending on the choice of material model, can be positive or negative.

Thus, while the term in x gives a positive contribution to N the value of N can be either positive or negative.
This suggests that either contraction or extension of the tube may be associated with the rotation, as also
concluded by Chadwick et al. (1977).

It is interesting to examine the sign of the integrand in (69) for the strain-energy function (65) in the
purely elastic case. We calculate
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2kzwkz � kwk ¼ lk�ak�a
z ð2kak2az � k2akaz � 1Þ: ð71Þ
To illustrate the result we plot, in Fig. 1, the curve of 2kak2az � k2akaz ¼ 1 in (kz,k) space for a = 2 (short-
dashed curve) compared with k2kz = 1 (continuous curve). We also plot the corresponding curve for a = �2
(long-dashed curve), which may be expressed as 2k2 � k2z � k4k4z ¼ 0. For l > 0 the sign of (71) is positive to
the right of the short-dashed curve. For any other a > 0 such that la > 0 the curve is qualitatively similar
and again (71) is positive to the right. Likewise, for a = �2 (and l < 0), (71) is positive to the right of the
long-dashed curve and similarly for other negative values of a. In each case (71) is negative to the left of the
relevant dashed curve. Note that for kz = 1 the expression in (71) reduces to �l(ka�k�a)2. Thus, on this line
(71) is negative for l > 0 and positive for l < 0. This reinforces the discussion in the foregoing paragraph
concerning the case kz = 1. In particular, if l < 0 (and a < 0) then N is necessarily positive, so that an axial
tension is required to prevent the tube shortening by rotation. On the other hand, if l > 0, as for the neo-
Hookean material (a = 2), axial compression (N < 0) is possible, which is not inconsistent with a tendency
for the rotation to lengthen the tube.

If kz is fixed at a value greater than 1 then, clearly, by reference to Fig. 1, it can be seen that the integrand
(71) is positive for all the considered strain-energy functions with a < 0, and also for those with a > 0 up to
values of k where the short-dashed curve is crossed. Then, N is necessarily tensile. The situation is different
for values of kz < 1. For a > 0 the integrand (71) is then negative, while for a < 0 it is negative until, as k
increases, the long-dashed curve is reached.

If we now include the effect of the magnetic field but set x = 0 then, on taking account of the exterior
Maxwell stress, we may write the integrand in the resultant N � Nm (for kz = 1, for example) as
2ðk2 þ k�2 � 2ÞðX�
2 � X�

1Þ � 2k2K4ðX�
5 þ 2k2X�

6Þ þ l0k
�2K4: ð72Þ
Thus, if
2k4ðX�
5 þ 2k2X�

6Þ > l0; ð73Þ
1 2 3 4

1

2

3

4

λ

λz

Plot of k2kz = 1 (continuous curve), 2k2k4z � k4k2z ¼ 1 (short-dashed curve, associated with a = 2), and 2k2 � k2z � k4k4z ¼ 0
ashed curve, associated with a = �2) in (kz,k) space. The expression (71) is positive (negative) to the right (left) of the relevant
curve in each case.
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the magnetic field generates a negative contribution to N � Nm, suggesting the tendency of the magnetic
field to lengthen the tube. This makes physical sense, as the following argument, adapted from that in
Kankanala and Triantafyllidis (2004) relating to an axial magnetic field in a cylinder, indicates. As a result
of an azimuthal magnetic field, magnetic particles at a given radius will tend to be attracted circumferen-
tially, thereby reducing the radius and tending to increase the length of the tube.
5. Rotating solid cylinder

Consider now a solid cylinder with circular cross-section rotating with constant angular speed x about
its axis. We again use cylindrical polar coordinates in the reference and current configurations and define
the cross-section of the cylinder in the reference configuration by the inequalities
0 6 R 6 B; 0 6 H 6 2p: ð74Þ

The cylinder is deformed by the combination of its rotation and an applied axial magnetic field in such a
way that the cross-section remains circular and uniform. The deformed cross-section is given by
0 6 r 6 b; 0 6 h 6 2p: ð75Þ

In component form the (homogeneous) deformation is given by
r ¼ k�1=2
z R; h ¼ Hþ xt; z ¼ kzZ; ð76Þ
with the same notation as was used in (43). With respect to the cylindrical polar axes the deformation gra-
dient F is diagonal with entries ðk�1=2

z ; k�1=2
z ; kzÞ, while the left Cauchy-Green deformation tensor is coaxial

with the cylindrical polar axes and has principal values ðk�1
z ; k�1

z ; k2z Þ. The principal invariants I1 and I2 are
simply
I1 ¼ k2z þ 2k�1
z ; I2 ¼ 2kz þ k�2

z : ð77Þ

Let the (axial) components of B and H be denoted by Bz and Hz, respectively. Their Lagrangian counter-
parts, denoted BlZ and HlZ, are then given by the appropriate specialization of (5) through
Bz ¼ kzBlZ ; Hz ¼ k�1
z HlZ ; ð78Þ
and the invariants I4, I5, I6 and K4, K5, K6 are given by
I4 ¼ B2
lZ ; I5 ¼ k2z I4; I6 ¼ k4z I4; ð79Þ
and
K4 ¼ H 2
lZ ; K5 ¼ k2zK4; K6 ¼ k4zK4: ð80Þ
The components of s are calculated in a similar way to those in Eqs. (48) and (50) and we do not therefore
give their counterparts here. Similarly for the equations for Hz and Bz. In the present problem there is just
one independent deformation variable, namely kz. In view of the connections (79) and (80) we again intro-
duce reduced forms of X and X�, denoted by w and w� respectively, but now defined by
wðkz; I4Þ ¼ XðI1; I2; I4; I5; I6Þ; ð81Þ

with (77) and (79), and
w�ðkz;K4Þ ¼ X�ðI1; I2;K4;K5;K6Þ; ð82Þ

with (77) and (80).

It follows that shh = srr,
szz � srr ¼ kzwkz ¼ kzw�
kz
; ð83Þ
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and
Hz ¼ 2k�2
z w4Bz; Bz ¼ �2k2zw

�
4Hz; ð84Þ
while Mz is given by Mz ¼ l�1
0 Bz � Hz.

Since shh = srr, the equilibrium equation (59) reduces to
dsrr
dr

þ qx2r ¼ 0: ð85Þ
Next, recalling that the tangential component Hz of the magnetic field must be continuous across the
boundary r = b, we calculate the Maxwell stress sm exterior to the cylinder from (20). Its (uniform) com-
ponents are
smrr ¼ smhh ¼ �smzz ¼ � 1

2
l0H

2
z : ð86Þ
On integration of (85) and use of (86) and continuity of srr across the boundary r = b, we obtain
srr ¼
1

2
qx2ðb2 � r2Þ � 1

2
l0H

2
z : ð87Þ
The axial stress is then obtained from Eq. (83) in the form
szz ¼ kzw�
kz
þ 1

2
qx2ðb2 � r2Þ � 1

2
l0H

2
z ; ð88Þ
and its resultant on a cross-section of the cylinder, denoted N, is given by
N=pb2 ¼ kzw�
kz
þ 1

4
qx2b4 � 1

2
l0H

2
z : ð89Þ
The consequences of (89) for a rotating elastic cylinder (with no magnetic field) for N = 0 were examined by
Chadwick et al. (1977). It was shown, in particular, that rotation is necessarily accompanied by shortening
of the cylinder provided the reasonable assumption that wkz P 0ð6 0Þ corresponds to kz P 1(6 1) is
adopted, as is usually required for uniaxial stress. Haughton and Ogden (1980b) considered the elastic spe-
cialization of (89) for different values of N in respect of a particular class of strain-energy functions. They
showed that for fixed values of N < 0 the curves of x2 against kz were monotonic, while for N P 0 they were
non-monotonic. This also applies in the presence of a magnetic field under appropriate conditions.

If, as in Section 4, we consider kz = 1 then (88) becomes
szz ¼ 2ðX�
5 þ 2X�

6ÞK4 �
1

2
l0K4 þ

1

2
qx2ðB2 � R2Þ: ð90Þ
In this case, when there is no magnetic field, the rotation generates a tensile axial load irrespective of the
form of constitutive law, in contrast to the result in Section 4.4. In the absence of rotation, the magnetic
field (which is in this case axial) also generates a tensile axial load if the analogue 2ðX�

5 þ 2X�
6Þ > l0 of

the inequality (73) holds. Thus, the axial field has the opposite effect on the cylinder (and similarly on a
tube) to that of an azimuthal field on the tube in terms of mechanical response.

Formally, the analysis in this section applies to an infinitely long cylinder since a uniform axial magnetic
field cannot be maintained in a cylinder of finite length. This is because Hz is continuous across r = b

whereas Bz is continuous across the ends of the cylinder. These two requirements are not in general con-
sistent with the (vacuum) relation Bz = l0Hz. Thus, for a cylinder of finite length the magnetic field is nec-
essarily inhomogeneous. However, for sufficiently large aspect ratio length/radius it can be taken as
approximately uniform except near the ends, and this allows the possibility of comparison between the
theory and experimental results.
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6. Concluding remarks

A spinning elastomeric cylinder can be regarded as a simple model of many devices of technical interest.
For example, when the rotating tube is mounted on a rigid spindle (of circular cylindrical geometry) the
internal radius a in the deformed configuration coincides with the radius of the spindle. Of particular inter-
est is the contact stress between the tube and spindle, which must satisfy the shrink-fit inequality srr(a) < 0.
If this inequality is not satisfied then dangerous effects (which may be enhanced by resonance phenomena
within a dynamical framework) may be initiated. Understanding of the influence of a magnetic field may
then allow control of srr(a) so as to ensure that the shrink-fit condition is satisfied.

It is clear from (61) and the continuity conditions that the contribution of the magnetic field to srr due to
the Maxwell stress in the spindle (assumed non-magnetic) is negative, and it is therefore possible in principle
to tune Hh so as to ensure that the shrink-fit inequality is satisfied in situations where there is a mechanical
spin-off speed. In a purely mechanical theory (see Chadwick et al. (1977) for a detailed discussion) it is
known that for some particular constitutive equations there exists a critical value of the speed of rotation
for which srr(a) = 0 and the tube loses contact with the spindle. This is the spin-off speed.

In the present situation, as already noted, we may think of Hh as being generated by an axial steady cur-
rent I, which determines the constant c in (58), and we may therefore effectively control the magnetic field.
Moreover, to have a clear picture of the behaviour we need to consider particular forms of the constitutive
equations in order to evaluate the right-hand side of (63). But, as we have already discussed, the effect of the
magnetic field is similar to that of an internal pressure and it is this that allows the application of a suitable
magnetic field to bring the spin-off speed to an acceptable value.

The theory considered in this paper is phenomenological and these possibilities therefore have to be
tested experimentally since we have no a priori information about the constitutive parameters involved.
Without experimental investigations it is not possible to appreciate if the positive influence of a magnetic
field is obtained for a range of speeds of technical interest and with the application of technically feasible
currents. The results presented here in the framework of a nonlinear theory of magnetoelasticity are the
kind of rigorous computations that are needed for the rational guidance of experimental tests. Indeed,
the findings here may provide a basis for the use of active materials in improving existing devices and trans-
forming them into smart structures.

In Patterson and Hill (1977) the stability of a rotating solid cylinder of neo-Hookean elastic material was
examined, while Haughton and Ogden (1980a,b) discussed the stability and bifurcation of rotating tubes
and cylinders of isotropic elastic material in some detail. It is also of interest to examine the influence of
a magnetic field on such behaviour, and this will be the subject of a separate communication.
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