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Abstract

In this paper we use a recently developed concise general theory of nonlinear magnetoelasticity to analyze the
mechanical response of (a) a circular cylindrical tube under steady rotation about its axis in an azimuthal magnetic field,
and (b) a solid circular cylinder also under steady rotation about its axis in an axial magnetic field. It is found that for
problem (a) the magnetic field can either enhance or counteract the effect of rotation, while for problem (b) the magnetic
field reinforces the effect of rotation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent series of papers (Dorfmann and Ogden, 2003a,b; Dorfmann and Ogden, 2004, in press) we
have developed several alternative formulations of the equations of nonlinear magnetoelasticity and applied
those equations to the solution of a number of boundary-value problems. The equations have intrinsic
mathematical interest but the work is primarily motivated by its application to the response of magneto-
sensitive (MS) elastomers. In the present paper we make use of a particularly simple formulation described
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by Dorfmann and Ogden (2004, in press) in the analysis of two problems of practical interest for an incom-
pressible isotropic magnetoelastic solid. These are for (a) a thick-walled circular cylindrical tube, and (b) a
solid circular cylinder, each undergoing a steady rotation about its axis. For (a) the rotation takes place in
the presence of an azimuthal magnetic field, while for (b) the magnetic field is axial.

In Section 2 we summarize the mechanical and magnetic balance equations, while in Section 3 the con-
stitutive law for a magnetoelastic solid is developed, both in general and for the particular case of an iso-
tropic magnetoelastic material, and for both compressible and incompressible materials. We include
formulations of the constitutive law based separately on the magnetic field and the magnetic induction
as the independent magnetic variable.

In Section 4 problem (a) is analyzed. In particular, we obtain an explicit formula that relates the rota-
tion, the magnetic field and the deformation through an integral involving the energy function. We point
out that this is similar in structure to the problem of inflation of an elastic tube under an internal pressure.
Because of the differences in the constitutive law as compared with a purely elastic material, however, the
effect of the magnetic field can be different from that of a pressure. In particular, if the length of the tube is
maintained under a rotation (without a magnetic field) by the application of an axial load then this load
may be positive or negative, depending on the form of constitutive law. The presence of the magnetic field
can either enhance or counteract the effect of rotation, depending on the magnetic contribution to the con-
stitutive law. Under reasonable assumptions on the latter the axial load in the absence of rotation can be
negative when an azimuthal magnetic field is applied, thereby preventing the tube from lengthening. Thus,
the magnetic field alone, without an applied axial load, would induce a magnetostrictive increase in length.

The situation is somewhat different for problem (b), which is examined briefly in Section 5. In this case,
because the magnetic field considered is axial, under the same constitutive assumptions as for (a), the mag-
netic field enhances the effect of rotation. Thus, without the rotation, the magnetic field generates a short-
ening of the cylinder. This is consistent with the discussion of the problem of extension of a cylinder in an
axial magnetic field due to Kankanala and Triantafyllidis (2004), who considered a special form of consti-
tutive law. Section 6 contains some closing remarks.

2. Basic equations
2.1. Kinematics

Consider a magneto-sensitive body occupying a region %, in a three-dimensional Euclidean space in the
absence of mechanical loads and magnetic fields. We assume that the body is stress free in this configura-
tion. Let material points in %, be labelled by their position vectors X relative to some chosen origin, and
denote time by ¢ € I C R, where [ is an interval of R.

Suppose that the material is now deformed by the application of mechanical loads and a magnetic field
such that the point X moves to a new position x = y(X, ¢) in the resulting configuration, which we denote by
%;. The vector field y describes the motion of the body and is defined for 7 € I and for X € %, U 04,, where
the boundary of %4, is denoted by 0%,.

The time-dependent deformation gradient tensor relative to %y, denoted F, and its determinant, denoted
J, are

F=Grad gy, J=detF >0, (1)

respectively, where Grad is the gradient operator with respect to X. The Cartesian components of F are
given by Fj; = 0x;/0X;, where X; and x;, i = 1,2,3, are the Cartesian components of X and x, respectively.
For full details of the kinematics of solid continua we refer to, for example, Ogden (1997) and Holzapfel
(2001).
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The velocity, denoted v, and acceleration, denoted a, of a material point X are defined as
62

V=X, = @Z

(X,1), a=x,,= (X, 1), (2)

a%

where 0/0r is the material time derivative, denoted for brevity by ,,.

2.2. Magnetic balance equations

In the current configuration %, the relevant magnetic field variables are H, the magnetic field, B, the
magnetic induction, and M, the magnetization. These are related by the standard equation

B = 1y(H+ M), (3)

where g is the magnetic permeability in vacuo. In vacuo, M = 0 and Eq. (3) reduces to B = yoH. For time-
independent magnetic fields, to which we restrict attention here, the vectors B and H satisfy the appropriate
specializations of Maxwell’s equations, which are

divB=0, curlH=0, (4)

where, respectively, div and curl are the divergence and curl operators with respect to x. A further connec-
tion between these magnetic field vectors will be introduced in the form of a constitutive law in Section 3.
Then, if, for example, the magnetization M of the material is given by a constitutive law as a function of B,
Eq. (3) determines H, also as a function of B.

Eqgs. (3) and (4) are expressed in Eulerian form. Lagrangian forms for the magnetic induction and the
magnetic field, denoted by B, and H, respectively, are obtained by pull-back operations from %, to %,.
These Lagrangian fields are related to B and H through

B=J"'FB,, H=F "H, (5)

where F~T = (F~')T and T denotes the transpose of a second-order tensor. For derivations of these connec-
tions we refer to, for example, Dorfmann and Ogden (2003b, 2004) and Steigmann (2004).
The standard identities

Div(JF 'B) =J divB, Curl(F'H) = curl H (6)
ensure that the Maxwell equations (4) are equivalent (for suitably regular deformations) to
DivB; =0, CurlH,; =0, (7)

where, respectively, Div and Curl are the divergence and curl operators with respect to X.

However, no corresponding simple transformation between M and M, arises naturally in a similar way,
but, in view of the fact that H and M occur as a sum in (3), a Lagrangian form of M, denoted M,, may be
defined, similarly to (5),, by

M, = F'M. (8)

(Note, however, that this is not the only possible definition of a Lagrangian form of M, since M, could
equally be defined similarly to B;.) On use of (5) and (7) in (3) we obtain

Jich[ = ,MO(H[ + M;), (9)

where c is the right Cauchy-Green deformation tensor defined by ¢ = F'F.
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2.3. Mechanical balance laws

Let pg and p denote the mass densities in the reference and deformed configurations, %4, and %,, respec-
tively. Then, for the considered continuum, the conservation of mass may be written in the standard form

Jp = po, (10)

which we employ here.
In the absence of mechanical body forces, the equation of motion may be written in the simple form

divt = pa, (11)

where 7 is the total stress tensor (see, for example, Dorfmann and Ogden (2003a,b, 2004) Steigmann (2004),
Kovetz (2000), Hutter and van de Ven (1978) and Maugin (1988) for discussion of different stress tensors
and magnetic body forces). Balance of angular momentum requires that T be symmetric:

=1 (12)

If the governing equations are expressed in Eulerian form, as above, then the field variables B, H, M and =
are defined in the current configuration as functions of the position vector x. These equations can also be
recast in Lagrangian form. For this purpose we define a total nominal stress tensor T related to = by

T=JF'z. (13)
The equation of motion (11) is then expressible equivalently as
DivT = pya. (14)

2.4. Boundary conditions

To complete the formulation of boundary-value problems we need to supplement the governing differ-
ential equations with appropriate constitutive laws (which are considered in Section 3) and boundary con-
ditions. The magnetic boundary conditions may be given in either Lagrangian or Eulerian form. Here,
however, we confine attention to the latter. At a bounding surface of the considered material in the de-
formed configuration the vector fields B and H satisfy the standard jump conditions

n-[B]=0, n-[H =0, (15)

where the square brackets indicate a discontinuity across the surface and n is the unit normal to the surface,
which, by convention, is taken as the outward pointing normal to the boundary. In the case of (15), it is
assumed that there are no surface currents.

At the boundary of the body the (total) traction continuity condition is (in Eulerian form)

[tfln=0, (16)
where, at the exterior of the body boundary, the traction includes the appropriate Maxwell stress (in the
case of a vacuum, for example) and any applied mechanical tractions.

Boundary conditions in which the position is prescribed on part of the boundary may also be prescribed,
but we do not make them explicit here.

3. Constitutive equations

To derive constitutive equations for the total stress tensor t and the magnetization M, we assume the
existence of a free energy function, denoted ¥ and defined per unit mass, with F and B as independent vari-
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ables. Use is then made of the connection (5); so that F and B, are the independent variables and the free
energy function denoted @. Thus, we write

¥ = ¥(F,B) = ¥(F,J 'FB)) = o(F,B)). (17)

Objectivity requirements (see, for example, Steigmann (2004) and Dorfmann and Ogden (2003b)) enable @
to be treated as a function of c¢ (instead of F) and B,.

3.1. Compressible materials

3.1.1. Use of B, as an independent variable
For unconstrained materials, we have (see Dorfmann and Ogden (2004, in press))

o 1
‘c:pFﬁ—&-,ual BoB-— (BB, (18)

where I is the identity tensor, and symmetry of 7 follows automatically from objectivity of @.
In terms of @ the (Eulerian) magnetization vector is given by
Rl
M=—pJF " —. 19
T (19)

In vacuum, @ = 0, and the stress = reduces to the Maxwell stress, here denoted t,,, given by
1
rmua‘{B®B2(B~B)I} (20)

with B = poH. On use of (4) it then follows that div t,, = 0.
The corresponding Lagrangian forms of the total stress tensor and the magnetization vector are given by

09 1 1 w
and
0P
M, = ~Pogg,” (22)

On use of the amended free energy function introduced by Dorfmann and Ogden (2004), denoted
Q = Q(F,B)) and defined by

1
Q= p0<I>—|—§,ualJ’1B1 - (cBy), (23)
we may write the total stress tensors T and T in the compact forms
oQ oQ
=J'F =, T=—. 24
=S T oF @4)

Note that these equations apply only within the material since F is not defined outside.
On use of Eqgs. (23) and (9), which is based on (3), together with (22) we obtain

0Q
0B;’
and, for a given B, the magnetization M, is then given by (9) and (25). As for (24), Eq. (25) applies only
within the material.

H, = (25)
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3.1.2. Use of H; as an independent variable

As in Dorfmann and Ogden (2004, in press) we now consider an alternative formulation of the governing
equations based on use of H (or, equivalently, H;) as the independent magnetic variable. For this purpose
we make use of the Legendre transformation

Q'(F,H;) = Q(F,B;)) —H,- B, (26)
which defines Q*(F,H,) as a function of F and H; (under suitable invertibility assumptions on (25)). Then,
the counterparts of Eqgs. (24), and (25) are

o 0"

TZW’ B/:—a—l_ll, (27)
with M, given by
M[ = ,uglJfch, — H]. (28)

Alternatively, instead of defining Q*(F,H),) via (26), and to avoid the need for using the Legendre transform,
an energy defined as a function of F and H or F and H, could be defined ab initio and the constitutive law
then developed in terms of H;.

In either formulation the Egs. (7), or equivalently (4), must be satisfied.

3.2. Incompressible materials

For an incompressible material we have the equivalent constraints
detF=1, p=p,, (29)
and the amended free energy function then simplifies to

1
Q= pofp +§/,talB, . (CB[). (30)

The expressions for the total stress tensors (24) now include the Lagrange multiplier p associated with the
constraint (29) and are given by

oQ oQ 1
rfFﬁpr, Tfﬁpr , (31)
in terms of Q and
Q" ; o el

in terms of €%, where we have used p* for the Lagrange multiplier since in general it will not be the same as

D-

Egs. (25) and (27), are unchanged, except that in (33) the constraint (29) is in force. For convenience we
collect these together here as
0Q o

H]:ai]?.l, B[Z—aHl. (33)

3.3. Isotropy

We note that the symmetry considerations for magnetoelastic materials are similar to those arising for
transversely isotropic elastic solids. Working in terms of the formulation based on 2 and following the
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analysis of transversely isotropic elastic solids in Spencer (1971) and Ogden (2001), for example, we define
an isotropic magnetoelastic material as one for which @ is an isotropic function of the two tensors ¢ and
B; ® B,. In this case the form of Q is reduced to dependence on the principal invariants I, I, I5 of ¢, defined
by

1

Li=tre, L=3 [(trc)2 —tr(¢?)|, [I3=dete=J> (34)
where tr is the trace of a second-order tensor, combined with the additional invariants involving B,, defined
by

[4 = |B[|2, 15 = (CB[) . B[, ]6 = (CzB[) . B/. (35)
The explicit form of 7 for an incompressible isotropic magnetoelastic material is

T=2Qb+2Q,(I)b— bz) —pl+2Q:B® B+ 2Q¢(B®bB+bB ® B), (36)
while the magnetic field is given by

H = 2(2,b 'B + QsB + QsbB), (37)

where I, = 1, Q = Q(I1, I, I, Is, Ig), the subscripts 1, 2, 4, 5, 6 signify partial differentiation with respect to
I, I, L, Is, I, respectively, and b = FF" is the left Cauchy-Green deformation tensor.

In the formulation based on Q*, we need to replace the invariants (35) by corresponding invariants using
H,. For these, we choose to use the invariants K,, Ks, K¢ defined by

Kis=|H/|*, Ks=(cH) -H,, K= (¢’H,)-H,. (38)
Then, the total stress is

T =2Q;b+2Q;(I;b — b*) — p'I + 2Q:bH ® bH + 2Q; (bH ® b’H + b’H ® bH), (39)
and the magnetic induction is given by

B = —2(2;bH + Q:b’H + Q;b’H), (40)

where Q" = Q*(I}, I, K4, K5, K¢) and Q; is defined as 0Q*/0I, for i = 1,2, and 0Q*/0K; for i =4,5,6.

We remark here that if the material properties depend on the sense of the magnetic (or magnetic induc-
tion) field then an additional invariant would be needed since, for example, Q would not be invariant under
the transformation B, — —B,. For simplicity we do not consider this possibility here.

4. Rotating tube
4.1. Kinematics

We now apply the equations discussed in Sections 2 and 3 to an incompressible isotropic magnetoelastic
circular cylindrical tube spinning about its axis with a constant angular speed w in the presence of an azi-
muthal magnetic field. Again we assume, for simplicity, that there are no mechanical body forces. Let the
tube in the stress-free reference configuration have internal and external radii 4 and B, respectively. The
geometry is defined by

A<R<B, 0<0<2n 0<Z<IL, (41)

where R, @, Z are cylindrical polar coordinates and L is a constant (the length of the tube).
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Let the deformed geometry of the tube be given by the equations
a<r<b 0<0<2n, 0<z<|, (42)

where r, 0, z are cylindrical polar coordinates in the deformed configuration, / is a constant and circular
symmetry is maintained.
Since the material is incompressible the deformation is given by

r:\/)gl(Rz—Az)—i—az, 0=0+wt, z=1.Z, (43)

where 4, is the (uniform) axial stretch and 7 denotes time.
The deformation is locally a pure homogeneous strain, the deformation gradient is diagonal with respect
to the cylindrical axes, and the principal stretches have the form

=270 dy = % =) Ja=A (44)

The corresponding matrix of components of b is also diagonal, with entries (1 2/1; 202 /If)
The invariants I; and I, given by Eq. (34) are computed as

L= 42422 L=+ 42 (45)

4.2. Magnetic field

We now assume that the magnetic field is azimuthal, with B and H having azimuthal components By and
H,y, respectively, which, because of the assumed symmetry, depend only on r. Since the cylindrical polar
axes are principal axes of the deformation, the Lagrangian fields B; and H; are also azimuthal. Their com-
ponents are denoted B, and H,e and the connections By = AB;e and Hy = 1~ 'H,, follow from the special-
ization of (5).

The invariants 14, I5, Is and Ky, Ks, K¢ are computed as

Li=By, Is=i"ls, Io=2"l (46)
and

Ky=Hy, Ks=71Ky, K= K, (47)

4.3. Constitutive relations

The only non-zero components of t are, in cylindrical polar form, z,,, 799 and 7.., and these depend only
on r. From Eq. (36) these are calculated as

T, = —p+ 227 [Q + (7 + 12)],
T = —p + 222 [Q) + Q2+ 72) + (Qs + 20001 L], (48)
.= —p+ 222[Q + Q4+ )],

while from Eq. (37) we obtain

Hy=2(Q47 + Qs + Q6/”) By. (49)



3708 A. Dorfmann et al. | International Journal of Solids and Structures 42 (2005) 3700-3715

Similarly, from Eqgs. (39) and (40), we obtain
T, = —p + 25 [Q) + Q52 + 22)],
t = —p + 227[Q) + QUL+ 22) + (@ +2000) 2K (50)
T.=—p +222[Q + Q504 + )],
and
By = —2(Q;2° + Qi1 + Q;2°)H,. (51)
Since the deformation depends only on A and 4, and we have the connections (46) it is convenient to intro-
duce a reduced form of Q, denoted w, depending only on A, 1, and I,. This is defined by
W(;“7;Lz7]4) :Q(11712714715716)7 (52)

taken in conjunction with (45) and (46).
The stress differences are now given by the simple expressions

Too — Trr = }vwia Tz = Tpr = A W), (53)

where the subscripts 4 and 1, signify partial derivatives. Similarly, simplified expressions for the magnetic
field and magnetization are obtained as

HU = 2}72\4/43(), M{) = MEIB() - H()a (54)

where w4 = 0w/0l,.
By defining, similarly, a reduced form w* of Q* by

w* (4, Ao, Kq) = Q" (11,12,K4,Ks5,Ks), (55)
with (45) and (47), we obtain from (50) and (51)

Top — Trr = AW}, Tz — Tpp = AW, (56)
and

By = —2/>wiH,, My = ;' By — H, (57)

where w; = Ow* /0K .
4.4. Governing equations and analysis

Since B, = 0 the Eq. (4), is satisfied identically and yields no information about By, while equation (4),
gives

Hy=". (58)

where ¢ is a constant.
The equation of motion (11) reduces to the radial component equation

dTrr T — Too

" = pa, (59)
where a, = —w?r, which, on use of (56);, becomes
de. _Aw; P’ (60)

& r
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Here, because Hj is continuous, it is convenient to use H,g as the independent variable and to work in terms
of w*.
From Eq. (20) the Maxwell stress exterior to the tube (assumed to be vacuum) has components

1
Torr = Tmzz = —Tmoo = — E;uOHﬁ (61)

Let 7, be denoted 7,,(r) to emphasize its dependence on r. Then, on integrating (60), assuming that there
are no mechanical tractions applied on the boundaries r = a and r = b, and applying the boundary condi-
tions on these boundaries, we obtain

15 2 2 ’ L dr
E(b —a’)pw” +1,(b) —tu(a) = [ Iw;—. (62)
a r
Next, on use of (61) and (58), we obtain
1 b — oy
g ( o + c2—> :/ ——+—dJ, 63
5 ( )\ e Hoe™ 3 . Th 1 (63)

in which we have changed the integration variable from r to 4 and introduced the notations /A, = a/A4,
A» = b/B. The latter are connected through

(322, — 1)B* = (A% — DR? = (20, — )42, (64)

which is obtained from the deformation (43);.

Since Hy necessarily has the form (58), By is determined by (57). Note that if we had started with By as
the ‘independent’ variable then it would be pre-determined from (54) as a function of r (implicitly and not
necessarily uniquely in general), dependent on the form of w, and in this sense it cannot, for this problem,
be regarded as an independent variable. We can think of H, as being generated by an axial steady current, /
say, within the core of the tube, in which case ¢ = I/2n, the value of which is at our disposal. We note in
passing that if the azimuthal magnetic field is replaced by an axial field H. then this is necessarily constant
(from equation (4),) and the Maxwell stress has the same value on each boundary, i.e. 1,(a) = 7,(b) =
—uoH? /2. Egs. (62) and (63) simplify accordingly since the formulas (53) and (56) hold in this situation also.

The corresponding problem of rotation of a thick-walled tube (with no magnetic effects) has been
examined by Haughton and Ogden (1980a), and the specialization of formula (63) in this case was
given therein. In the analogous problem of inflation of a thick-walled tube under an internal pressure
P(>0) (see, for example, Haughton and Ogden (1979) and Ogden (1997)) with no magnetic field and
no rotation, the left-hand side of Eq. (63) is replaced by P and w* = w depends only on 1 and A.. The rota-
tion of a tube was also considered by Chadwick et al. (1977), who examined in detail aspects of existence
and uniqueness of solution for a freely rotating tube (i.e. a tube rotating in the absence of an applied axial
load).

For an elastic material in the absence of a magnetic field the terms in QF and € vanish. Standard
inequalities such as the Baker-Ericksen inequalities require that Q4 12Q; > 0. Now, by (64), /%4, — 1
has the same sign for all r such that a < r < b. Therefore, if )vzi: <1 it follows that wj; <0 fora<r<b
and hence the integral is negative (since then 1, > 4,). For the integral to be positive we must therefore have
42).>1, and hence wj > 0, for a < r < b (in which case 4, > /,). Likewise, under pure rotation, again in the
absence of magnetic effects, we must have A%/ > 1 for a < r < b. One might expect intuitively that the inner
radius of the tube increases with the rate of rotation w and the length of the tube decreases, but the opposite
effect is not, in principle, excluded by the inequality A%, > 1.

It is interesting to consider, for the purely elastic situation, the strain-energy function given by

W= w = g(z“ T3, (65)
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where p and o are material constants satisfying uo > 0 (see, for example, Ogden (1972, 1997)). We then
have

dwy = (A — A7), (66)

from which it follows that w, > 0 if and only if 221 > 1. We shall return to consideration of (65) in connec-
tion with the expression for the axial load on the tube.

Turning now to the effect of the magnetic field we note that since both terms on the left-hand side of (63)
are positive, the effect of the rotation and the effect of the azimuthal magnetic field are each similar to the
effect of internal pressure. In particular, the integral must be positive. However, in the presence of the mag-
netic field the requirement w; > 0 for all r € [a, b] is no longer necessary. Therefore, in principle, this allows
w; to be negative for some values of r. However, since the constitutive law is different in the present situ-
ation, the interpretation can be different compared with the pure pressure case. This can be seen by noting
the formula

dwy =207 = A72070)(Q) + 12Q5) + 247 1,(Q5 + 20°Qp), (67)

which follows from (48) and (53). Indeed, it is even possible that 421, < 1 for r € [a,b] provided the terms in
Q: and Q; provide positive contributions to w} large enough to ensure that the integral is positive. In par-
ticular, depending on the form of Q*, an azimuthal magnetic field can enhance or counteract the effect of
rotation. On its own (without rotation) the magnetic field generates a magnetostrictive effect, which could
allow inflation or deflation of the tube coupled with either shortening or lengthening. These various possi-
bilities remain to be tested experimentally for the materials of interest.

We emphasize that for the considered azimuthal magnetic field the analysis applies for a tube of finite
length. There is therefore a normal stress on the ends of the tube arising from the component t,,.. of the
Maxwell stress given by (61). The traction that must be applied on the ends comes from the difference
between the normal stress 7.. within the material and the Maxwell stress 7,,,... The former is given by (53),.

The resultant axial load, N say, on a cross-section (independent of z), calculated from within the
material, is given by

b
N = 27[/ Trdr. (68)

After some rearrangement, using (53), (59), then (61) and (58), and noting that the contributions of the
Maxwell stresses on » = a and b following integration cancel, we obtain

b
1
N = n/ (22-w; — Jw})rdr + ana)z(b4 —a"). (69)
A similar formula was given by Dorfmann and Ogden (in press) for the situation of a tube inflated by an
internal pressure in the presence of an azimuthal magnetic field. The corresponding resultant, N,, say, of
T,,-- on the ends of the tube is calculated as

N, = —nuyc’ log(b/a). (70)

From (67) we see that if there is no magnetic field and the length of the tube is held fixed so that 4. = 1 then
necessarily 2 > 1 under rotation. After a short calculation it can then be seen that the sign of the integrand
in (69) is that of €5 — Q], which, depending on the choice of material model, can be positive or negative.
Thus, while the term in w gives a positive contribution to N the value of N can be either positive or negative.
This suggests that either contraction or extension of the tube may be associated with the rotation, as also
concluded by Chadwick et al. (1977).

It is interesting to examine the sign of the integrand in (69) for the strain-energy function (65) in the
purely elastic case. We calculate
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20w, — dwy = wh A0 = AP —1). (71)

To illustrate the result we plot, in Fig. 1, the curve of 24*22* — 1**2* = 1 in (4., 1) space for o = 2 (short-
dashed curve) compared with 4>, = 1 (continuous curve). We also plot the corresponding curve for o = —2
(long-dashed curve), which may be expressed as 2/% — /lf - /14ij = 0. For u> 0 the sign of (71) is positive to
the right of the short-dashed curve. For any other o > 0 such that ux > 0 the curve is qualitatively similar
and again (71) is positive to the right. Likewise, for « = —2 (and u <0), (71) is positive to the right of the
long-dashed curve and similarly for other negative values of . In each case (71) is negative to the left of the
relevant dashed curve. Note that for 2. = 1 the expression in (71) reduces to —u(A*—/~*)%. Thus, on this line
(71) is negative for x> 0 and positive for u < 0. This reinforces the discussion in the foregoing paragraph
concerning the case 4. = 1. In particular, if 4 <0 (and o < 0) then N is necessarily positive, so that an axial
tension is required to prevent the tube shortening by rotation. On the other hand, if x> 0, as for the neo-
Hookean material (o = 2), axial compression (N < 0) is possible, which is not inconsistent with a tendency
for the rotation to lengthen the tube.

If A. is fixed at a value greater than 1 then, clearly, by reference to Fig. 1, it can be seen that the integrand
(71) is positive for all the considered strain-energy functions with o < 0, and also for those with « > 0 up to
values of 4 where the short-dashed curve is crossed. Then, N is necessarily tensile. The situation is different
for values of 4. < 1. For o> 0 the integrand (71) is then negative, while for o <0 it is negative until, as 4
increases, the long-dashed curve is reached.

If we now include the effect of the magnetic field but set w = 0 then, on taking account of the exterior
Maxwell stress, we may write the integrand in the resultant N — N,, (for 4. = 1, for example) as

202+ 277 = 2)(Q5 — Q) — 227K 4 (5 4 227Q%) + pol K. (72)
Thus, if
22MQE+227Q0) > o, (73)

Fig. 1. Plot of /%), =1 (continuous curve), 24*2% — 1*72 = 1 (short-dashed curve, associated with o« =2), and 24> — 72 — 2*2} = 0
(long-dashed curve, associated with o = —2) in (4., 1) space. The expression (71) is positive (negative) to the right (left) of the relevant
dashed curve in each case.
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the magnetic field generates a negative contribution to N — N,,, suggesting the tendency of the magnetic
field to lengthen the tube. This makes physical sense, as the following argument, adapted from that in
Kankanala and Triantafyllidis (2004) relating to an axial magnetic field in a cylinder, indicates. As a result
of an azimuthal magnetic field, magnetic particles at a given radius will tend to be attracted circumferen-
tially, thereby reducing the radius and tending to increase the length of the tube.

5. Rotating solid cylinder

Consider now a solid cylinder with circular cross-section rotating with constant angular speed o about
its axis. We again use cylindrical polar coordinates in the reference and current configurations and define
the cross-section of the cylinder in the reference configuration by the inequalities

0<R<B, 0<6<2n (74)

The cylinder is deformed by the combination of its rotation and an applied axial magnetic field in such a
way that the cross-section remains circular and uniform. The deformed cross-section is given by

0<r<b, 0<0<2n. (75)
In component form the (homogeneous) deformation is given by
r=2_""R, 0=0+wt, z=1127, (76)

with the same notation as was used in (43). With respect to the cylindrical polar axes the deformation gra-
dient F is diagonal with entries (/1;1/ 2, /1;1/ 2. ).), while the left Cauchy-Green deformation tensor is coaxial

with the cylindrical polar axes and has principal values ();1 , i;l , /13) The principal invariants /; and I, are
simply

L=il+2)]" L=2.+1" (77)

Let the (axial) components of B and H be denoted by B. and H., respectively. Their Lagrangian counter-
parts, denoted B,> and H,, are then given by the appropriate specialization of (5) through

B.=J.Bj;, H.=J_'Hp, (78)
and the invariants Iy, Is, I and Ky, Ks, K¢ are given by

I,=B, Is=711, Is=71, (79)
and

Ky=H:, Ks=/Ki; Ks=71Ky. (80)

The components of 7 are calculated in a similar way to those in Egs. (48) and (50) and we do not therefore
give their counterparts here. Similarly for the equations for H. and B.. In the present problem there is just
one independent deformation variable, namely A.. In view of the connections (79) and (80) we again intro-
duce reduced forms of 2 and Q*, denoted by w and w* respectively, but now defined by

W(;Lz714) = Q(11712714715716)7 (81)
with (77) and (79), and
W*<)“Z)K4) = Q*([17[27K47K57K6)7 (82)

with (77) and (80).
It follows that tg9 = 7.,

T = Ty = AW, = LW, (83)
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and
H.=2)"wB., B.=—2)}w,H., (84)
while M. is given by M, = u;'B. — H..
Since 799 = 7,4, the equilibrium equation (59) reduces to

d rr

é + pa’r = 0. (85)
Next, recalling that the tangential component H, of the magnetic field must be continuous across the
boundary r = b, we calculate the Maxwell stress z,,, exterior to the cylinder from (20). Its (uniform) com-
ponents are

1

Torr = Tm00 = —Tmzz — — EMOHf (86)
On integration of (85) and use of (86) and continuity of 7,. across the boundary r = b, we obtain
1 1
T = =~ par (b — 1?) — = uoH>. (87)
2 2 z
The axial stress is then obtained from Eq. (83) in the form
1 1
T = W), + Epwz(b2 — ) — z,uon7 (88)
and its resultant on a cross-section of the cylinder, denoted N, is given by
1 1
N/mb* = J.w; + pr2b4 _ EMOHE' (89)

The consequences of (89) for a rotating elastic cylinder (with no magnetic field) for N = 0 were examined by
Chadwick et al. (1977). It was shown, in particular, that rotation is necessarily accompanied by shortening
of the cylinder provided the reasonable assumption that w; > 0(< 0) corresponds to 4. > I(< 1) is
adopted, as is usually required for uniaxial stress. Haughton and Ogden (1980b) considered the elastic spe-
cialization of (89) for different values of N in respect of a particular class of strain-energy functions. They
showed that for fixed values of N < 0 the curves of w” against 1. were monotonic, while for N > 0 they were
non-monotonic. This also applies in the presence of a magnetic field under appropriate conditions.
If, as in Section 4, we consider 1. =1 then (88) becomes

T = 2(Q5 + 2Q¢)K4 — %MOKA; + %pwz(B2 —R?). (90)
In this case, when there is no magnetic field, the rotation generates a tensile axial load irrespective of the
form of constitutive law, in contrast to the result in Section 4.4. In the absence of rotation, the magnetic
field (which is in this case axial) also generates a tensile axial load if the analogue 2(Q% + 2€¢) > p, of
the inequality (73) holds. Thus, the axial field has the opposite effect on the cylinder (and similarly on a
tube) to that of an azimuthal field on the tube in terms of mechanical response.

Formally, the analysis in this section applies to an infinitely long cylinder since a uniform axial magnetic
field cannot be maintained in a cylinder of finite length. This is because H. is continuous across r =b
whereas B. is continuous across the ends of the cylinder. These two requirements are not in general con-
sistent with the (vacuum) relation B. = ugH.. Thus, for a cylinder of finite length the magnetic field is nec-
essarily inhomogeneous. However, for sufficiently large aspect ratio length/radius it can be taken as
approximately uniform except near the ends, and this allows the possibility of comparison between the
theory and experimental results.
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6. Concluding remarks

A spinning elastomeric cylinder can be regarded as a simple model of many devices of technical interest.
For example, when the rotating tube is mounted on a rigid spindle (of circular cylindrical geometry) the
internal radius « in the deformed configuration coincides with the radius of the spindle. Of particular inter-
est is the contact stress between the tube and spindle, which must satisfy the shrink-fit inequality 7,.(a) <0.
If this inequality is not satisfied then dangerous effects (which may be enhanced by resonance phenomena
within a dynamical framework) may be initiated. Understanding of the influence of a magnetic field may
then allow control of 7,.(a) so as to ensure that the shrink-fit condition is satisfied.

It is clear from (61) and the continuity conditions that the contribution of the magnetic field to 7, due to
the Maxwell stress in the spindle (assumed non-magnetic) is negative, and it is therefore possible in principle
to tune Hj so as to ensure that the shrink-fit inequality is satisfied in situations where there is a mechanical
spin-off speed. In a purely mechanical theory (see Chadwick et al. (1977) for a detailed discussion) it is
known that for some particular constitutive equations there exists a critical value of the speed of rotation
for which 7,,(a) =0 and the tube loses contact with the spindle. This is the spin-off speed.

In the present situation, as already noted, we may think of H, as being generated by an axial steady cur-
rent 7, which determines the constant ¢ in (58), and we may therefore effectively control the magnetic field.
Moreover, to have a clear picture of the behaviour we need to consider particular forms of the constitutive
equations in order to evaluate the right-hand side of (63). But, as we have already discussed, the effect of the
magnetic field is similar to that of an internal pressure and it is this that allows the application of a suitable
magnetic field to bring the spin-off speed to an acceptable value.

The theory considered in this paper is phenomenological and these possibilities therefore have to be
tested experimentally since we have no a priori information about the constitutive parameters involved.
Without experimental investigations it is not possible to appreciate if the positive influence of a magnetic
field is obtained for a range of speeds of technical interest and with the application of technically feasible
currents. The results presented here in the framework of a nonlinear theory of magnetoelasticity are the
kind of rigorous computations that are needed for the rational guidance of experimental tests. Indeed,
the findings here may provide a basis for the use of active materials in improving existing devices and trans-
forming them into smart structures.

In Patterson and Hill (1977) the stability of a rotating solid cylinder of neo-Hookean elastic material was
examined, while Haughton and Ogden (1980a,b) discussed the stability and bifurcation of rotating tubes
and cylinders of isotropic elastic material in some detail. It is also of interest to examine the influence of
a magnetic field on such behaviour, and this will be the subject of a separate communication.
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